

DCS/CSCI 2350 Social & Economic Networks

What does a real-world network look like?

Reading: Ch 2 of EK, Ch 2 & 3 of Jackson Graph visualization using Gephi

> Mohammad T. Irfan Email: mirfan@bowdoin.edu

Real-World Networks

Investigate at:

- 1. Macro-level (graph-level)
- 2. Micro-level (node-level)

Macro-level: 1. Giant component 2. Small-world 3. Degree distribution 4. Clustering

Network	Ν	L	(k)	(k _{in} ²)	(k_{out}^2)	(k²)	Yin	Yout	γ
Internet	192,244	609,066	6.34	-	-	240.1	-	-	3.42*
www	325,729	1,497,134	4.60	1546.0	482.4	-	2.00	2.31	-
Power Grid	4,941	6,594	2.67	-	-	10.3	-	-	Exp.
Mobile-Phone Calls	36,595	91,826	2.51	12.0	11.7	-	4.69*	5.01*	-
Email	57,194	103,731	1.81	94.7	1163.9	-	3.43*	2.03*	-
Science Collaboration	23,133	93,437	8.08	-	-	178.2	-	-	3.35*
Actor Network	702,388	29,397,908	83.71	-	-	47,353.7	-	-	2.12*
Citation Network	449,673	4,689,479	10.43	971.5	198.8	-	3.03*	4.00*	-
E. Coli Metabolism	1,039	5,802	5.58	535.7	396.7	-	2.43*	2.90*	-
Protein Interactions	2,018	2,930	2.90	-	-	32.3	-	-	2.89*-

Source: Network Science Book by Barabasi (2016)

Authors	Network	Period	Ν	k	L Actual	L Random	CC Actual	CC Random	Lr	CCr	Q
Organizations											
Kogut and Walker (2001)	German firms	1993-1997	291	2.02	5.64	3.01	0.84	0.022	1.87	38.18	20.38
Baum et al.	Canadian I-banks	1952-1957	53	1.36	3.21	4.556	0.023	0.027	0.70	0.85	1.21
(2003)		1969-1974	41	2.22	2.82	3.176	0.283	0.054	0.89	5.24	5.90
		1985-1990	142	3.83	2.95	3.144	0.273	0.027	0.94	10.11	10.78
Davis et al.	US Co. interlocks	1982	195	6.8	3.15	2.7	0.24	0.039	1.17	6.15	5.27
(2003)		1999	195	7.2	2.98	2.64	0.2	0.039	1.13	5.13	4.54
Verspagen and Duvster (2004)	Strategic alliances*	1980-1996	5504	5.29	4.2	5.25	0.34	0.0008	0.80	425.00	531.25
Schilling and	US alliances in 11	1992-2000	171	3.11	20.39	5.62	0.26	0.04	3.85	10.44	2.71
Phelps, (forthcoming)	2-digit SIC codes**		(157)	(1.42)	(18.69)	(3.01)	(0.18)	(0.039)	(2.84)	(7.53)	(2.65
Persons											
Davis et al.	US Director	1982	2366	19.1	4.03	2.61	0.91	0.009	1.54	101.11	65.48
(2003)	interlocks	1982	2078	17.4	3.98	2.65	0.89	0.009	1.50	98.89	65.84
(2003)	Interiocks	1990	1916	16.3	3.86	2.69	0.89	0.009	1.43	97.78	68.14
Fleming et al.	US patenting	1999	7069	4.73	2.73	2.69	0.88	0.009	2.394737	97.78	6.80
(forthcoming)	inventors***										
Kogut and Walker (2001)	German Co. ownership	1993-1997	429	3.56	6.09	5.16	0.83	0.008	1.18	103.75	87.91
Newman (2004)	Biology co-authorship	1995-1999	1,520,251	18.1	4.6		0.066				
	Physics co-authorship	1995-1999	52,909	9.7	5.9		0.43				
	Mathematics co-authorship	1940-2006	253,339	3.9	7.6		0.15				
Moody, 2004	Sociologists co-authorship	1963-1999	128,151		9.81	7.57	0.194	0.207	1.30	0.94	0.72
	ee aanoromp	1989-1999	87,731		11.53	8.24	0.266	0.302	1.40	0.88	0.63
Goyal et al.	Economists	1980-1989	48,608	1.244			0.182				
	co-authorship	1990-1999	81,217	1.672			0.157				
Watts (1999)	Hollywood Film actors	1898-1997	226,000	61	3.65	2.99	0.79	0.00027	1.22	2925.93	2396.85
Smith (2006)	U.S. Rappers		5533		3.9		0.18				
	U.S. Jazz musicians		1275		2.79		0.33				
	Brazilian pop		5834		2.3		0.84				
Technology											
Watts (1999)	Power grids		4941	2.94	18.7	12.4	0.08	0.005	1.51	16.00	10.61
Vazquez et al.	Internet	1997	3112	3.5	3.8	14.4	0.08	0.005	1.51	10.00	10.01
(2002)	memer	1997	3834	3.6	3.8		0.18				
(2002)		1998	5287	3.8	3.7		0.21				

Red: Graph level Black: Node/edge level Gephi Vocabulary				
Term	Meaning			
betweenness centrality of a node	how often the node appears on the shortest path between nodes in the network			
closeness centrality of a node	average distance from that node to all other nodes in the network			
degree of a node	the number of edges connected to the node (also connectedness); in a directed graph a node can have in- degree and out-degree measures			
diameter of a graph	the longest shortest path between any two nodes in the graph			
directed graph	this means relationships occur one way only (I follow you, but you do not follow me on Twitter); opposite of undirected (we are friends with each other on Facebook)			
eccentricity of a node	the distance (shortest-path length) from the node to the farthest node from it in the network			
edge	a representation of the connection between two nodes, expresses a relationship (a line)			
eigenvector centrality of a node	in social network analysis, a measure of influence (a node is very influential if it is connected to other influential nodes)			
layout algorithms	also known as graph drawing algorithm; e.g., force-directed drawing where linked nodes attract and non- linked nodes repel			
leaf node	node with a single edge in a "tree-structured" graph			
modularity	a measure of connectedness among groups of nodes (greater than 0.4 is usually considered meaningful)			
node	also called a vertex by mathematicians; a person in a social network graph (a dot or bubble)			
distance from one node to another	the length of the shortest path (counted in the number of edges) from one node to another			
path length	the number of edges in a path			
singleton node or isolated node	node with no edge/connection			

Centrality

Notation: n = # of nodes Reading: Jackson (Ch 2)

<section-header><section-header><list-item><list-item><list-item>

Caution: centrality

• Six Degrees, pg. 51

An important example of how a purely structural approach to networks has led many analysts into a reassuring but ultimately misleading view of the world is the case of *centrality*. One of the great mysteries of large distributed systems—from communities and organizations to brains and ecosystems—is how globally coherent activity can emerge in the absence of centralized authority or control. In systems like dicta-

Eigenvector							
	eigenvector calculator						
calculator	∫₽ Extended Keyboard 🛓 Upload	🗰 Examples 🛛 🗯 Random					
	Computational Inputs:						
	<pre>> matrix: {{0, 1, 0, 0}, {1, 0, 1, 1}, {0, 1, 0, 1}, Compute</pre>						
	Input:						
	eigenvectors $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$						
	Results:	Exact forms Step-by-step solution					
	$\nu_1 \approx (0.539189, 1.17009, 1, 1)$						
	$\nu_2\approx(1.67513,-2.48119,1,1)$						
	$v_3 = (0, 0, -1, 1)$						
	$\nu_4 \approx (-2.21432, -0.688892, 1, 1)$						
	Corresponding eigenvalues:	Exact forms Step-by-step solution					
	$\lambda_1 \approx 2.17009$						
	$\lambda_2 \approx -1.48119$						
	$\lambda_3 = -1$						
	$\lambda_4 pprox 0.311108$						

Comparison

- What are the differences among:
 - Degree centrality
 - Closeness centrality
 - Betweenness centrality
 - Eigenvector centrality

Red: Graph level Black: Node/edge level	Review: Gephi Vocabulary
Term	Meaning
betweenness centrality of a node	how often the node appears on the shortest path between nodes in the network
closeness centrality of a node	average distance from that node to all other nodes in the network
degree of a node	the number of edges connected to the node (also connectedness); in a directed graph a node can have in- degree and out-degree measures
diameter of a graph	the longest shortest path between any two nodes in the graph
directed graph	this means relationships occur one way only (I follow you, but you do not follow me on Twitter); opposite of undirected (we are friends with each other on Facebook)
eccentricity of a node	the distance (shortest-path length) from the node to the farthest node from it in the network
edge	a representation of the connection between two nodes, expresses a relationship (a line)
eigenvector centrality of a node	in social network analysis, a measure of influence (a node is very influential if it is connected to other influential nodes)
layout algorithms	also known as graph drawing algorithm; e.g., force-directed drawing where linked nodes attract and non- linked nodes repel
leaf node	node with a single edge in a "tree-structured" graph
modularity	a measure of connectedness among groups of nodes (greater than 0.4 is usually considered meaningful)
node	also called a vertex by mathematicians; a person in a social network graph (a dot or bubble)
distance from one node to another	the length of the shortest path (counted in the number of edges) from one node to another
path length	the number of edges in a path
singleton node or isolated node	node with no edge/connection